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ABSTRACT: A strategy is developed for generating equili-
brated high molecular weight polymer melts described with
microscopic detail by sequentially backmapping coarse-grained
(CG) configurations. The microscopic test model is generic
but retains features like hard excluded volume interactions and
realistic melt densities. The microscopic representation is
mapped onto a model of soft spheres with fluctuating size,
where each sphere represents a microscopic subchain with Nb
monomers. By varying Nb, a hierarchy of CG representations
at different resolutions is obtained. Within this hierarchy, CG
configurations equilibrated with Monte Carlo at low resolution
are sequentially fine-grained into CG melts described with
higher resolution. A Molecular Dynamics scheme is employed to slowly introduce the microscopic details into the latter. All
backmapping steps involve only local polymer relaxation; thus, the computational efficiency of the scheme is independent of
molecular weight, being just proportional to system size. To demonstrate the robustness of the approach, microscopic
configurations containing up to n = 1000 chains with polymerization degrees N = 2000 are generated and equilibration is
confirmed by monitoring key structural and conformational properties. The extension to much longer chains or branched
polymers is straightforward.

Studying equilibrium and rheological properties of melts of
long polymer chains with computer simulations requires

the preparation of equilibrated configurations described with
microscopic detail. For this purpose, stochastic approaches have
been proposed to circumvent the prohibitively large relaxation
times in schemes with physically realistic dynamics, resulting
from chain entanglements. Among methods addressing directly
the microscopic scale, rebridging (RB) algorithms1 are the most
advanced, modifying the chain connectivity while avoiding
significant changes in local monomer packing. Even with their
help, the longest melts currently addressed are those of linear
polyethylene, corresponding to monodisperse samples with a
few C1000 chains.1 Introducing polydispersity increases the
acceptance rate of RB moves and longer chains can be
modeled. However, the system becomes less well-defined, for
example, for understanding rheological behavior and the
samples remain rather small: the longest C6000 (average length)
melt2 that was realized contained 32 chains. To prove
equilibration, these studies relied on the decay of conforma-
tional correlations. However, recent findings3 demonstrate that
the combination of chain connectivity and limited compressi-
bility affects chain conformations. Since RB moves are largely
decoupled from density fluctuations, such subtle effects
suggest3 that, to verify unambiguously melt equilibration,
more sensitive descriptors of chain shape, such as internal
distance plots,3,4 should be considered.

To overcome the limitations encountered when modeling
polymers directly at the microscopic scale, configuration-
assembly procedures4−7 have been proposed. Chains with
conformations drawn from the distribution expected in the melt
are treated as rigid bodies and arranged, under relaxed excluded
volume interactions. The latter are reintroduced and the
configuration is equilibrated. For relatively short chains,
random placement of molecules has been sufficient7 although
this leads to unrealistically high density fluctuations: if ρo is the
average melt monomer density, the isothermal compressibility,
κT, of the ideal gas of chains increases with polymerization
degree N as κT ∼ N/ρo. For long polymers, strong density
fluctuations cause significant conformational distortions when
introducing excluded volume.4 Density fluctuations can be
reduced by optimizing molecular packing through a Monte
Carlo (MC) scheme.4,5 Since the computational time of such
an optimization increases significantly with chain length, such
approaches are better suited for melts with medium-sized
chains5 (N ∼ 500). Postulating a distribution for polymer
conformations is an additional limitation. For example, due to
the long-range intramolecular correlations,3 assuming ideal
chain statistics is an approximation. It is also difficult to
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estimate conformational properties in melts with nonlinear
molecules, close to spatial inhomogeneities, mixtures, and so
on.
Universality is a key feature of polymeric systems, which has

tremendously facilitated their theoretical and experimental
description: while on the microscopic level, their behavior
depends strongly on chemical details, on mesoscopic scales, it
can be frequently related to a few generic parameters.8

Benefiting from scale-separation, we develop a hierarchical
backmapping strategy (Figure 1), which opens the way for

generating microscopic configurations of melts with chains
significantly longer than those that can be addressed within the
currently available techniques (more detailed discussion
follows). First, equilibrated configurations reproducing cor-
rectly the properties of the microscopic melt on length scales
comparable to the size of the polymer coil are obtained, with
minimum computational requirements, using a crude coarse-
grained (CG) model based on a soft-blob description. We
proceed to finer scales reducing the size of the blobs, through
sequential fine-graining. Since the mesoscopic polymer
structure is already captured, this procedure requires at each
step only local relaxation of conformations and liquid structure,
being thus computationally very efficient. Once the highest
resolution in the hierarchy is reached, microscopic details can
be efficiently reinserted, requiring again only local relaxation.
Focusing on method development, we employ here the

generic KG (Kremer-Grest) microscopic model9 characterized,
however, by hard excluded volume interactions and strong
covalent bonds. Thus, topological constraints hampering the
equilibration of chemistry-specific atomistic models can be
reproduced. Each of the n linear chains in the KG melt consists
of N monomers with mass m linked by FENE springs. The
nonbonded interactions of two monomers with distance r are

described through a purely repulsive Lennard-Jones (LJ)
potential, ULJ(r), truncated at rc and shifted so that ULJ(rc) =
0. In this work, kBT = 1, the LJ length, energy, and time scales
are fixed to σo = 1, ϵo = 1, and τ = 1, while m = 1. In these units,
the spring constant and the maximum extension of the bond
are k = 30 and R0 = 1.5, respectively, while rc = 21/6. The melt
monomer density is ρo ≃ 0.85. With the KG model, Molecular
Dynamics (MD) simulations using the ESPResSo++ package10

were performed to generate reference data on the properties of
melts with N = 1000. These demanding MD simulations will be
denoted as reference simulations.
The KG model is coarse-grained by mapping each subchain

with Nb monomers onto a soft sphere with fluctuating size.11

The coordinates of the center, ri, and the radius, σi, of the ith
sphere match the position of the center-of-mass (COM), Rcm,
and the instantaneous gyration radius, Rg, of the ith subchain.
Each polymer is represented by a chain of NCG = N/Nb spheres,
as illustrated in Figure 1a. Varying Nb, a hierarchy of models
with different resolutions can be obtained (see Figure 1b). The
spheres are linked by bond, βVbond(d) = 3d2/2bCG

2 , and
angular,12 βVbend(θ) = kbend(1 + cos θ)/2 potentials (β = 1/
kBT), where d and θ stand for the distance and the angle,
respectively, between consecutive spheres and bonds in a chain.
The potentials βVsphere(σ) = a1Nb

3σ−6 + a2Nb
−1σ2 and βVself(σ) =

a3σ
−3 are associated with each sphere radius, controlling its

fluctuations. The former reproduces13 the distribution of Rg of
ideal subchains (i.e., when all nonbonded interactions, apart
from intramolecular 1−2, are set to zero). The latter accounts
for subchain swelling by microscopic nonbonded interactions
following Flory.14 Nonbonded interactions between two
spheres, i and j, are given by βVnb(rij) = ϵUG(rij), where rij is
the distance of their centers, UG(rij) is a Gaussian function with
variance σ2 = σi

2 + σj
2 (normalized to unity in three dimensions).

The number of neighbors a sphere interacts with, increases with
coarse-graining as Nb

1/2. Thus, with the CG model MC
simulations are performed, using an efficient particle-to-mesh
calculation of nonbonded interactions, which avoids neighbor
lists.15

To parametrize the model for different Nb, first only
βVsphere(σ) and βVbend(θ) are considered. To match the
conformational properties of ideal chains in the CG and the
microscopic models a1, a2, and kbend are assigned the values
reported by Vettorel et al.11 These ensure that P(σ) ∼
exp(−βVsphere(σ)) and P(θ) ∼ exp(−βVbend(θ)) follow the
distributions of (a) gyration radii of Nb monomer subchains
and (b) angles between imaginary lines (see Figure 1a)
connecting COM’s of sequential Nb monomer subchains in an
ideal FENE microscopic chain. Interestingly,12 P(θ) converges,
increasing Nb to a universal functional form for all chains with
Gaussian statistics (i.e., regardless whether they are isolated or
in melt). Subsequently, in the reference MD simulations, for Nb
monomer subchains, the distributions of the distance between
the COM’s (only for sequential subchains) and of the gyration
radii are calculated. Simulations of CG melts are performed,
with the full CG force-field, and the remaining parameters bCG,
a3, and ϵ are determined iteratively so that the distributions of
bond lengths and radii of soft spheres match the above
reference data from the microscopic simulations. For parameter
values, see the Supporting Information.
The CG model, parametrized as above, reproduces the

remaining structural and conformational properties of the
microscopic melt when considered at the same resolution.
Figure 2a compares the pair correlation function, g(r, Nb), of

Figure 1. Hierarchical backmapping strategy summarized. (a) A chain
of soft spheres with fluctuating size is shown on the left (red) and on
the right (semitransparent object) representing on CG level a polymer
described with the microscopic KG model (solid beads are
monomers). Each sphere corresponds to a Nb monomer subchain.
The CG force-field is parametrized using data obtained from
microscopic melts of medium-sized chains, accessible to more
conventional techniques. (b) Hierarchy of sequentially fine-grained
CG models where the resolution is doubled at each step. (c)
Equilibrated high molecular weight polymer melts are obtained,
reinserting microscopic details into the last CG configuration of the
fine-graining hierarchy. The snapshot shows a melt of n = 1000 chains
with polymerization degree N = 2000 (2 × 106 monomers in total).
Colors are randomly chosen to improve visibility of different chains.
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the COM’s of the Nb monomer subchains in the microscopic
melts (solid lines) with its equivalent quantifying the packing of
the centers of the soft spheres in CG melts equilibrated by MC
(solid symbols). For resolutions Nb = 50 and 100, the two
functions follow each other closely. For Nb = 25, the g(r, Nb) in
the soft sphere model is somewhat more structured than its
microscopic counterpart. It exhibits a deeper depletion at r = 0,
indicating that the CG nonbonded potential becomes harder
than the effective interactions between subchains in the melt.
Therefore, Nb = 25 corresponds approximately to the smallest
length of the subchains in the KG model that can easily be
mapped onto the current soft sphere representation.
Figure 2b−d compare polymer conformations in CG melts

and in reference simulations through the internal distance
plot,3,4 C(s, Nb) ≡ R2(s, Nb)/s. For CG melts, R2(s, Nb) is the
mean square distance of the centers of spheres in the same
chain. In microscopic systems, R2(s, Nb) is the mean square
distance of the COM’s of Nb monomer subchains in the same
molecule. In both cases, s is the difference of the ranking
numbers of spheres (subchains) along the CG (microscopic)
chain contour. Figure 2b−d demonstrates that global single
chain conformations are closely reproduced by the CG model.
For the crude resolution, Nb = 100, the tails (s ≥ 5) of the two
plots differ at most by 0.25%, while for Nb = 25, the difference
of the tails (s ≥ 25) is less than 1%. More locally (smaller s) for
both Nb, the polymer conformations in the CG model deviate
marginally from those in the microscopic description (the
maximum difference occurs at s = 1 or 2 and is below 5%), that
is, the microscopic chains appear somewhat stiffer than the CG
polymers. Considering the simplifications during formulation
and parametrization (e.g., implementing two-body interactions

and simple repulsive potentials without any attractive
contributions16) such imperfections can be expected and
should not obscure the excellent performance of the model at
larger length scales. More refined parametrizations and CG
force fields are not considered since these small local
conformational inconsistencies are easily remedied during the
reinsertion of microscopic details. For the deviations of the
internal distance plots as a function of s, see the Supporting
Information.
In summary, the stages of our backmapping strategy are as

follows: (a) Equilibrating a configuration at very crude
resolution with MC simulations started from random initial
configuration and sequential fine-graining until a CG melt with
Nb = 25 is generated. (b) Reinsertion of microscopic details
into the last CG configuration.
Stage (a) is realized reducing at each step of the

backmapping sequence the degree of coarse-graining from Nb
to Nb/2 (which doubles the resolution of the model) as follows:

(1a) First, each sphere is replaced with two smaller ones (i.e.,
a “dimer”) as illustrated in Figure 2e. If its center is
located at r, the coordinates r1 and r2 of the centers of
the two substituting smaller spheres are chosen so that
(a) r1 + r2 = 2r, meaning that the dimer COM coincides
with the center of the replaced sphere and (b) r1 − r2 =
d, where d stands for the vector of the bond of the dimer.
The bond orientation is chosen randomly while the
length is drawn according to exp[−βVbond(d)] (the force-
field parameters correspond to resolution Nb/2).

(2a) The molecular connectivity is fully restored (cf., Figure
2e), linking the dimers in the same chain by the
potentials βVbond(d) and βVbend(θ). To relax the chain
conformations only bonded interactions are considered.
The configuration is then subjected to MC moves,
displacing locally the spheres but conserving the position
of the COM’s of the dimers.

(3a) To obtain a packing of the reinserted spheres which is
close to equilibrium, all components of the CG force-
field are activated. The radii and positions of the centers
are equilibrated through MC moves (random changes of
radius and local displacement) preserving the location of
the COM’s of the dimers to which the spheres belong.

(4a) All constraints are removed and the system is relaxed
until all energy components reach a plateau. The
coordinates of the centers of the spheres are sampled
with local displacement MC moves. This ensures that
only local relaxation occurs and conformational proper-
ties on large scales are not affected.

Stage (b) comprises the following steps:

(1b) Each of the n polymers in the CG melt with Nb = 25 is
replaced by a microscopic chain so that its conformation
complies with the overlying CG description. Namely,
each of the NCG subchains with Nb = 25 monomers must
fulfill two constraints: (a) the position of the COM of
the subchain coincides with the location of the center of
the corresponding soft sphere, ri, and (b) the radius of
gyration (squared) of each microscopic subchain equals
the radius (squared) of the corresponding soft sphere, σi

2.
Therefore, we associate with each subchain two
pseudopotentials: βVcm = kcm(ri − Rcm)

2 and βVg =
kg(σi

2 − Rg
2)2. The forces from these potentials acting on

each monomer of the subchain, combined with FENE
and nonbonded intramolecular 1−2 interactions (the rest

Figure 2. (a) Pair distribution functions g(r, Nb) of the COM’s of the
Nb monomer subchains in microscopic melts (solid lines) and the
centers of the soft spheres in CG melts obtained from direct MC
simulations (solid symbols) and backmapping (open symbols). (b−d)
Internal distance plots C(s, Nb) calculated from the COM’s of the Nb
monomer subchains in melts described with the microscopic model
(red lines) and from the centers of soft spheres in CG melts obtained
from direct MC simulations (solid symbols) and backmapping (open
symbols). (e) Details of fine-graining a soft sphere chain. “Dimer” is a
pair of spheres with centers located at r1 and r2, replacing a larger one
with center located at r. Solid lines show the bonds of each dimer
while dashed lines denote the bonds restoring the connectivity of the
polymer after linking dimer ends.
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are set to zero), are employed to obtain for every CG
polymer an underlying microscopic conformation using
MD. The MD is terminated once the energies βVcm and
βVg (averaged over all subchains) reach a plateau. This
relaxation takes negligible time since, at this stage, the
system presents an ensemble of noninteracting chains in
external fields. For the values of kcm and kg, see the
Supporting Information.

(2b) After replacing each CG polymer by an underlying
microscopic chain, excluded volume is reinserted using a
refined version5 of the “push-off” procedure of Auhl et
al.4 Generally, building up microscopic monomer packing
can cause significant distortion of polymer conformations
with severe consequences for the structure of entangle-
ments. Thus, nonbonded interactions are described
through a “force capped” LJ potential, ULJ(r, rfc), where
the original microscopic interactions are recovered as rfc
→ 0. During the “push-off”, which is realized using MD,
the deviation of the conformations from those in the
equilibrium melt is minimized adjusting rfc through a
feedback loop.5 This requires reference data only on local
chain structure (available from small-scale MD simu-
lations of melts with medium sized chains). After the
“push-off”, the original LJ potential is activated and the
microscopic melt is fully equilibrated using short time
MD simulations with duration t ≃ 2 × 104τ. It is
emphasized that this equilibration time does not depend
on chain length N and is comparable to the
entanglement time, τe, defined as the Rouse time of a
subchain with Ne monomers17 (in our case,5 Ne ≃ 80).

The backmapping strategy decomposes the equilibration of
melts of long polymer chains into a sequence of steps involving
fast relaxation of short (sub)chains. The initial equilibration of
properties on large scales is based on a reduced number of
degrees of freedom and soft interactions which relieve
topological constraints on chain motion. Thus, if the simplest
local MC moves are employed (realizing Rouse-like dynamics)
and the resolution of the start-up simulation corresponds to
Nb(o), the relaxation time of the CG chains scales as τR ∼ (N/
Nb(o))

2. The CPU time needed to relax a system with volume V
should then scale as τcg ∼ τRVρo/Nb(o). The initial simulation
with the crude model is the only instance when the molecular
weight of the modeled melt affects directly the equilibration
time; the computational cost of the actual backmapping
procedure does not depend on chain length. Indeed,
equilibrating each level in the fine-graining hierarchy involves
only dumbell motion with characteristic relaxation time τdb;
therefore, the total CPU time for equilibrating a hierarchy with
l levels will be τfg ∼ τdbVρo∑i=1

l 2i−1/Nb(o) < τdbVρo2
l/Nb(o).

Considering that 2l−1/Nb(o) is the finest resolution of the
hierarchy (i.e., a chain-length-independent quantity, which in
our case equals Nb = 25), yields τfg ∼ τdbVρo. As mentioned
above, the relaxation time of the reinsertion of microscopic
details is also chain-length-independent and comparable to τe.
The CPU time for accomplishing this final step will scale as τre
∼ Vρoτe.
Here the hierarchy of the CG models incorporates three

levels, Nb = 100, 50, and 25. The agreement between structural
and conformational properties in the CG configurations created
during fine-graining and those in the reference microscopic
melts is similar to the case of direct MC simulations. For the
local packing this is demonstrated calculating in fine-grained

melts with Nb = 50 and Nb = 25 the pair correlation function
g(r, Nb), which is shown in Figure 2a with open symbols. For
large s, the internal distance plots C(s, Nb) in the fine-grained
melts with Nb = 50 and 25 (Figure 2c,d, open symbols) follow
closely the C(s, Nb) in the microscopic simulations
demonstrating that the conformations on large scales are
captured correctly, for example, for Nb = 25 and s ≥ 20, the two
plots differ by less than 0.1%. This is closer comparing to the
direct CG simulations and we conclude that the fine-graining
smoothes out some of the inaccuracies of the CG model for Nb
= 25. This can be explained considering that the correct chain
structure obtained on cruder levels is transferred to the finer
scales since fine-graining involves only local equilibration. For
small s, the deviation of the internal distance plots in the fine-
grained CG melts from the reference data reproduces the
trends in direct MC simulations, that is, it is below 5%. For the
deviations of the internal distance plots as a function of s, see
Supporting Information.
We consider now melts obtained after accomplishing the

reinsertion of microscopic details into CG configurations (i.e.,
after stage (b)). Figure 3a presents the monomer pair

correlation function, g(r), calculated in systems with N =
1000 created by backmapping (solid symbols). It is
indistinguishable from the g(r) in the reference MD
simulations, manifesting that reinsertion leads to a correct
microscopic structuring of the liquid. To verify that the packing
of the polymer on large scales is also correctly described, we
compare in Figure 3b the intermolecular part, ginter(r), of the
pair correlation functions in the above two systems (in each
case r is rescaled by the average radius of gyration, Rg, of the

Figure 3. (a) Monomer/monomer pair distribution function g(r) in
microscopic melts with N = 1000 obtained from backmapping (solid
circles) and reference MD simulations (red line). (b) Same as panel
(a) but for the intermolecular monomer/monomer pair distribution
function ginter(r). The distance, r, is rescaled by the average radius of
gyration, Rg, of the molecules. (c, d) Microscopic melts with N = 1000
and N = 2000 (solid circles and solid rhombi) obtained from
backmapping and reference MD simulations with N = 1000 (red line)
are considered. For these systems, panel (c) shows the inverse
structure factor of the density, 1/S(q), as a function of squared
wavevector, q2. Panel (d) presents the internal distance plot, C(s).
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chains). The two plots are practically indistinguishable,
confirming that the correlation hole is correctly generated
(cf., the long tail behavior of the ginter(r)). This is an important
result,6 indicating that the correct arrangement of the polymer
on scales on the order of Rg is already reproduced in the initial
crude configuration (Nb = 100) generated through the direct
MC simulation. This is the only stage in our scheme where
chains can diffuse distances comparable or larger than Rg. We
verify that long wavelength density fluctuations are properly
captured. Figure 3c considers the structure factor of the density,
S(q), calculated for microscopic configurations of melts with N
= 1000 and 2000 created by reinsertion (solid symbols) and
reference MD simulations (red line). To highlight the behavior
at small wavevectors we present the inverse structure factor, 1/
S(q), as a function of squared wavevector, q2. It can be seen
that, within the noise of the data, the results for the three
systems are consistent with each other.
To confirm the agreement between the polymer conforma-

tions in melts with N = 1000 and 2000 created by backmapping
and reference MD simulations, Figure 3d presents their internal
distance plots, C(s), calculated on monomer level. C(s) ≡
R2(s)/s, where R2(s) is the mean square distance of intra-
molecular monomers and s is the difference in their ranking
numbers along the chain contour. Indeed, after the back-
mapping procedure is accomplished, the relative deviation of
the curves for all s is at most 1%. The plots in Figure 3d were
obtained from a smaller number of independent runs than
those in Figure 2b−d, thus, the data are more noisy at large s.
For the deviations of the internal distance plots as a function of
s, see Supporting Information.
Typical computational demands of the developed method

can be illustrated considering N = 2000 melts, created in boxes
with edges equal to 5.6Rg and containing n = 1000 chains, that
is, 2 × 106 monomers (cf., Figure 1c). The computational
resources required to equilibrate this large system were indeed
very modest. Namely, on a single processor (2.0 GHz) the fine-
graining procedure (stage (a)) required 8 h in total: 5 h to
obtain the CG configuration at Nb = 100 by MC starting from
random initial configuration and 3 h for the fine-graining to
reach Nb = 25. The reinsertion of microscopic details until
obtaining an equilibrated melt (stage (b)) required ∼50 h on
32 processors (3.0 GHz). The total procedure thus lasts 58 h.
Equilibrating the same system with a configuration-assembly
approach5 on 32 processors requires 250 h. Here invoking only
a three-level fine-graining hierarchy has as a consequence that
for longer chains most of the CPU time in stage (a) is spent in
the MC simulations generating the starting CG configuration.
This CPU time can be minimized, taking full advantage of the
hierarchical backmapping scheme by adding CG levels with
cruder resolution. Thus the amount of degrees of freedom in
the initial simulations can be radically reduced. Hereby, since
the backmapping scheme itself depends only on system size
and not the length of polymer chains, melts with polymer-
ization degree up to thousand entanglement lengths (N ∼ 103

Ne) can be equilibrated.
The large samples of melts with long chains will be employed

for, for example, primitive path analysis and calculation of
rheological properties such as plateau modulus. Although we
have considered as an underlying microscopic model the
generic KG representation, a similar approach can be employed
for chemistry-specific models. In this case, the backmapping
hierarchy18 can include an additional step transforming a bead-

spring (or bead-rod) configuration into the atomistic
representation.
We mapped polymers on chains of soft spheres with

fluctuating size, interacting with simple force-fields. This
description was sufficient to obtain microscopic configurations
with correct properties after backmapping. The method can be
combined with more elaborated CG potentials based on, for
example, integral equation theory.19 The simple link between
microscopic and CG degrees of freedom is an important feature
of the current soft sphere model, simplifying the reinsertion of
the former. Facilitating reinsertion of chemical details is
essential for a CG model to be useful for hierarchical
backmapping. This should be considered when developing
models with sophisticated blob shapes and interactions,20−22 as
might be necessary for studying specific chemical systems,
nonlinear polymers, and mixtures.
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